










Fig. 7. Energy efficiency expressed in GMAC/s/W.

Significantly, mixed-precision QNN kernels also do not
suffer any performance hit, thanks to unpacking done in
hardware. The performance of 8x4 and 8x2 kernels are close
to the 8-bit uniform kernel, likewise for the 4-bit one. This
is because the selection of the dotp module (Fig. 5) is
tied to the size of the greater operand (e.g., 8x4 uses 8-
bit multipliers). However, we can see that the performance
is slightly better than their equivalent uniform case, thanks
to the higher operational intensity. If we perform a mixed-
precision 8x4 operation, operand b needs to fetch fewer data
from memory, since its register can hold twice as many
operands as the register containing a. Another factor that
impacts mixed-precision operation is the quantization process
(QntPack). Focusing on the chart for activations of 4- and 2-
bit, the performance is marginally worse than when we have
8-bit activations.

In contrast with performance in MAC/cycle, energy ef-
ficiency (expressed in GMAC/s/W) takes into account also
physical design parameters such as the fabrication technology
and the operating voltage and frequency. For the Cortex M7
and M4, we used an implementation from ST-Microelectronics
consuming ∼234 mW at 480 MHz [19] and 10 mW at 80
MHz [20], respectively; while we used the power consumption
figures reported in Table II for the RISC-V SoCs. In Figure 7,
we can see that the lower performance of the Cortex M7 is
emphasized even more by the technology factor, having a peak
of 1.27 GMAC/s/W and being from 74x to 255x less efficient
in these workloads compared to MPIC. The Cortex M4 is
way more efficient than the Cortex M7 but still falls short
when compared to RISC-V cores, being from 35x to 113x less
efficient. For the RI5CY core, we have a slight disadvantage
of 1% only in the 8-bit case, while in all other scenarios, the
results are qualitatively similar to the performance ones.

V. CONCLUSION

In this work, we presented an alternate way to deal with
a saturated encoding space. We extended the ISA to support
sub-byte and mixed-precision formats aiming at improving
the performance of QNN via removing the overhead caused
by unpacking data before computation. The MPIC-based SoC
implementation resulted in an area overhead of 11% when
compared to the baseline core while having a negligible
impact on frequency and power and so not compromising the
general-purpose nature of the RI5CY core. The performance
gain ranges from 1.1× to 7.7× when compared to the
baseline during the execution of a QNN layer, and from 3.6×
up to 19.3× in regard to the Cortex M7 and M4. The energy

efficiency peaks at 303 GMAC/s/W for the 2-bit convolution
and ranges from one to two orders of magnitude higher when
compared with ARM counterpart, providing a solution that
is considerably more efficient than commercially available
MCUs solutions for QNN inference.
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